Beyond the Mystery
Would you like to react to this message? Create an account in a few clicks or log in to continue.

Beyond the Mystery

Exploring the religions of the old and rediscovering our anncestors.
 
HomeSearchLatest imagesRegisterLog in

 

 Muslim Alchemists

Go down 
AuthorMessage
Silver Wind
Aud Mon Ra
Silver Wind


Posts : 1525
Join date : 2007-07-18
Age : 42
Location : The Mists of Avalon

Muslim Alchemists Empty
PostSubject: Muslim Alchemists   Muslim Alchemists Icon_minitimeThu Sep 27, 2007 12:00 pm

The Arabs appeared in history in the seventh century. Alchemy had by then gone through a long path. The first contacts took place in Egypt, in Alexandria, where the traditions went back several centuries before Christianity.

Muslim alchemy was derived from the Greek. The frequency with which Greek authors are quoted, the numerous theories that are common to both Greek and Arabic alchemy, and the large number of Arab technical terms clearly taken over from Hellenic treatises (e.g. hayuli, atisyus, athalia, iksir, qambar,S) prove beyond doubt the affiliation of Muslim and Greek alchemy. The transmission was made partly through direct contact in Egypt, partly through the medium of Syrian Christian translators, and partly by way of Persia. There are unmistakable traces of Persian influence, manifested distinctly by linguistic affinities in technical names and usage and in names of minerals. These traces are sufficiently well marked to render it probable that Persia was, indeed, one of the main channels through which alchemy came to Islam; and it is not without interest to note that many of the principal Muslim alchemists were Persians.

It has already been observed that Chinese alchemy has so much in common with Greek and Arabic alchemy as to afford support to the hypothesis that all three had a common origin; and there is some reason to believe that the Chinese practiced a kind of alchemy long before the days of Islam. The remote origins of Arabic alchemy are therefore still to some extent uncertain, but there is very little to recommend the suggestion that the Arabs received any direct introduction to alchemy from the Chinese. Whatever may be the cause of the similarity between Chinese, Greek and Muslim alchemical ideas.
Back to top Go down
http://www.journalhome.com/silverwynd2/
Silver Wind
Aud Mon Ra
Silver Wind


Posts : 1525
Join date : 2007-07-18
Age : 42
Location : The Mists of Avalon

Muslim Alchemists Empty
PostSubject: Re: Muslim Alchemists   Muslim Alchemists Icon_minitimeThu Sep 27, 2007 12:01 pm

JABIR IBN HAIYAN (721-815)

The greatest chemist of Islam has long been familiar to western readers under the name of Geber, which is the medieval rendering of the Arabic Jabir. Since the work of Paul Kraus we are on more solid ground with Jabir ibn Haiyan.

He is Abu Musa Jabir ibn Haiyan al-Azdl (al-Tusl, al-~artusl, al-Harram meaning that he was a Sabian?; al-Sufi). Flourished mostly in kufa. The most famous Arabic' alchemist; the alchemist Geberu of the Middle Ages. He may be the author of a book on the astrolabe, but his fame rests on his alchemical writings preserved in Arabic: the 'Book of the Kingdom', the 'Little Book of the Balances', the 'Book of Mercury', the 'Book of Concentration', the 'Book of Eastern Mercury', and others. According to the treatises already translated (by Berthelot), his alchemical doctrines were very anthropomorphic and animistic. But other treatises (not yet available in translation) show him in a better light. We find in them remarkably sound views on methods of chemical research; a theory on the geologic formation of metals; the so-called sulphur-mercury theory of metals (the six metals differ essentially because of different proportions of sulphur and mercury in them); preparation of various substances (e.g., basic lead carbonate; arsenic and antimony from their sulphides). Jabir deals also with various applications, e.g., refinement of metals, preparation of steel, dyeing of cloth and leather, varnishes to water-proof cloth and protect iron, use of manganese dioxide in glass making, use of iron pyrites for writing in gold, distillation of vinegar to concentrate acetic acid. He observed the imponderability of magnetic force.
It is possible that some of the facts mentioned in the Latin works, ascribed to Geber and dating from the twelfth century and later, must also be placed to Jabir's credit. It is impossible to reach definite conclusions until all the Arabic writings ascribed to Jabir have been properly edited and discussed. It is only then that we shall be able to measure the full extent of his contributions, but even on the slender basis of our present knowledge, Jabir appears already as a very great personality, one of the greatest in mediaeval science. Jabir admits the Aristotelian theory about the composition of matter-earth, water, air, fire-but he develops it along a different path. First, there are four elementary qualities, or natures: heat, cold, dryness, humidity. When they get together with a substance they form compounds of the first degree, i.e. hot, cold, dry, wet. The union of two of these qualities gives

hot + dry + substance -------------- fire
hot + wet + substance -------------- air
cold + wet + substance ------------- water
cold + dry + substance ------------- earth

One of his chief contributions to the theory of chemistry lies in his views upon the constitution of metals. To understand his conceptions properly, we must hark back to Aristotle, whose philosophy of nature was universally accepted in its main principles by the scientists of Islam. According to Aristotle, it still be remembered, all substances are composed of the four elements, fire, air, water, and earth, which are themselves interconvertible. The immediate constituents of minerals and metals are two exhalations, one an 'earthy smoke' and the other a watery vapour'; the former consists of small particles of earth on the way to becoming fire, while the latter consists of small particles of water on the way to becoming air. Neither exhalation is ever entirely free from some admixture of the other. Stones and other minerals are formed when the two exhalations become imprisoned in the earth, the dry or smoky exhalation predominating; metals are formed under similar circumstances if the watery exhalation predominates.

Jabir accepted this theory of the constitution of metals, but appears to have regarded it as too indefinite to explain observed facts or to afford a guide to practical methods of transmutation. He therefore modified it in such a fashion as to make it less vague, and the theory he suggested survived, with some alterations and additions, until the beginning of modern chemistry in the eighteenth century. The two exhalations, he believed, when imprisoned in the bowels of the earth, are not immediately changed into minerals or metals, but undergo an intermediate conversion. The dry or smoky exhalation is converted into sulphur and the watery one into mercury, and it is only by the subsequent combination of sulphur and mercury that metals are formed. The reason of the existence of different varieties of metals is that the sulphur and mercury are not always pure, and that they do not always combine in the same proportion. If they are perfectly pure and if, also, they combine in the most complete natural equilibrium, then the product is the most perfect of metals, namely gold. Defects in purity or proportion, or both, result in the formation of silver, lead, tin, iron or copper, but since these metals are essentially composed of the same constituents as gold, the accidents of combination may be removed by suitable treatment. Such treatment is the object of alchemy.
The idea that the transmutation of the metals was possible had the excellent merit of provoking incessant experiment, but unfortunately the alchemists were always prone to theorize to an inordinate extent. Moreover, at Alexandria, the mystical beliefs of the Gnostics and the Neo-Platonists - however admirable and attractive in themselves - had a very detrimental effect upon experimental science. Alchemy thus became less and less a matter for experimental research and more and more the subject of ineffable speculation and superstitious practice, not to say fraudulent deception.

The practical applications of chemistry were not neglected. Jabir describes processes for the preparation of steel and the refinement of other metals, for dyeing cloth and leather, for making varnishes to waterproof cloth and to protect iron, for the preparation of hair-dyes and so on. He gives a recipe for making an illuminating ink for manuscripts from 'golden' marcasite, to replace the much more expensive one made from gold itself, and he mentions the use of manganese dioxide in glass-making. He knew how to concentrate acetic acid by the distillation of vinegar, and was also acquainted with citric acid and other organic substances.
Back to top Go down
http://www.journalhome.com/silverwynd2/
Silver Wind
Aud Mon Ra
Silver Wind


Posts : 1525
Join date : 2007-07-18
Age : 42
Location : The Mists of Avalon

Muslim Alchemists Empty
PostSubject: Re: Muslim Alchemists   Muslim Alchemists Icon_minitimeThu Sep 27, 2007 12:09 pm

Abu Bakr Muhammad ibn Zakariyya al-Razi (866-925)

After the death of Jabir, nearly a century elapsed before Islam produced a worthy successor. History records a few alchemists in the interval, but it is only with the Persian chemist and physician Abu Bakr Muhammad ibn Zakariyya al-Razi (known to the West as Rhazes) that Jabir's great example is successfully followed.

According to one of his biographers, Razi was born in A.D. 866 at Ray, an ancient town on the southern slopes of the Elburz Range that skirts the south of the Caspian Sea. In his early youth he devoted himself to the study of music, literature, philosophy, manichaeism, magic and alchemy.
After his first visit to Baghdad, when he was at least 30 years of age, that he seriously took up the study of medicine under the well-known doctor Ali ibn Sahl (a Jewish convert to Islam, belonging to the famous medical school of Tabaristan or Hyrcania). Razi showed such skill in the subject that he quickly surpassed his master, and wrote no fewer than a hundred medical books. He also composed 33 treatises on natural science (exclusive of alchemy), on mathematics and astronomy, and more than 45 on philosophy, logic and theology. On alchemy, in addition to his Compendium of Tweltne Treatises and Book of Secrets, he wrote about a dozen other books, two of which were refutations of works by other authors in which the possibility of alchemy had been attacked.
As to the man himself, one of the inhabitants of Ray who recollected Razi described him as a man with a large square head. He used to take his seat in the lecture room, with his own pupils next him, and the pupils of these men behind them, and, behind these again, other pupils. Whenever any one came with a question, he used first to ask the back row. If they could answer, he went away; but, if not, he used to pass on to the others, and they, in their turn, if they could give a correct answer, tried to satisfy him; otherwise Razi would speak on the subject himself. He was a liberal and generous man, and so compassionate to the poor and sick that he used to distribute alms to them freely and even nurse them himself. He was always reading or copying, and "I never visited him" (said the narrator) "without finding him at work on either a rough or a fair copy". His eyes were always watering 'on account of his excessive consumption of beans', and he became blind towards the end of his life. He died in his native town on 26 October, A.D, 925, at the age of 60 years and 2 months.
Razi is of exceptional importance in the history of chemistry, since in his books we find for the first time a systematic classification of carefully observed and verified facts regarding chemical substances, reactions and apparatus, described in language almost entirely free from mysticism and ambiguity.

Razi's scheme of classification of the substances used in chemistry shows such a sound, it is the first time that we find such a systematic classification. The list of these products as mentioned in Sirr al-asrar book is as follows:

A. The earthly substances (al-'aqaqtr al-turabiyya) Mineral substances

1. The SPIRITS (al-arwah)
Mercury, sat ammoniac, arsenic sulphate (orpiment and realgar), sulphur

2. The BODIES (al-ajsad)
Gold, silver, copper, iron, lead, tin, Kharsind

3. The STONES (al-ahjar)
Pyrites (marqashita), iron oxide (daws), Zinc oxide (tutiya), azurite, malachite, turquoise, haematite, arsenic oxide, lead sulphate (kohl), mica and asbestos, gypsum, glass

4. The VITRIOLS (al-zajat)
Black, alums (al-shubub), white (qalqadzs), green (qalqand), yellow (qulqutar), red

5. BORAX (al-bawariq)

6. The SALTS (al-amlah)

B. Vegetable substances
Rarely used, they are mainly employed by physicians.

C. Animal substances
Hair, scalp, brain, bile, blood, milk, urine, eggs, horn, shell

To these 'natural substances' we need to add a certain number of artificially obtained substances; al-Razl mentions litharge, lead oxide, verdigris, copper oxide, zinc oxide, cinnabar, caustic soda, a solution of polysulphur of calcium and other alloys.

The insistence of al-Razl in promoting research work in the laboratory brought its fruits in pharmacy.

Razi gives also a list of the apparatus used in chemistry. This consists of two classes: (i) instruments used for melting metals, and (ii) those used for the manipulation of substances generally. In the first class were included the following:


Blacksmith's hearth
Bellows
Crucible
Descensory
Ladle
Tongs
Shears
Hammer or Pestle
File
Semi-cylindrical iron mould

The second class included:

Crucible
Alembic
Receiving flask
Aludel
Beakers
Glass cups
Shallow iron pan
Sieve
Heating-lamps
Cylindrical stove
Chafing-dish
Flat stone mortar
Round mold
Flasks
Phials
Cars
Cauldron
Sand-bath
Water-bath
Large oven
Hair-cloth
Filter of linen
Potter's Kiln
Mortar
Stone roller
Glass funnel

It will be observed that the list was comprehensive, but Razi completes the subject by giving details of making composite pieces of apparatus, and in general provides the same kind of information as is to be found nowadays in manuals of laboratory arts.

Like Jabir, Razi was a firm believer in the possibility of transmutation, and Stapleton describes his scheme of procedure approximately as follows:

The first stage: consisted in the cleansing and purification of the substances employed, by means of distillation, calcination, amalgamation, sublimation and other processes. Having freed the crude materials from their impurities,

The next stage: was to reduce them to an easily fusible condition. This was done by an operation known as aeration, that resulted in a product which readily melted, without any evolution of fumes, when dropped upon a heated metal plate.

The third stage: was to bring the 'berated' products to a further state of disintegration by the process of solution. The solutions of different substances, suitably chosen in proportion to the amount of 'bodies', 'spirits', &c., they were supposed to possess, were brought together by the process of combination.

Finally: the combined solutions underwent the process of coagulation or solidification, the product which it was hoped would result, being the Elixir. This, as previously explained, was a substance of which a small quantity, when projected upon a larger quantity of baser metal, would convert the latter into silver or gold.

From a general study of his chemical works, Stapleton says that hence forward Razi must be accepted as one of the most remarkable seekers after knowledge that the world has ever seen - not only 'unique in his age and unequaled in his time', but without a peer until modern science began to dawn in Europe with Galileo and Robert Boyle. The evidence of his passion for objective truth that is furnished by his chemical writings, as well as the genius shown by the wide range of books he wrote on other subjects, force us to the conclusion that - with the possible exception of his acknowledged master, Jabir - Razi was the most noteworthy intellectual follower of the Greek philosophers of the seventh to fourth centuries B.C. that mankind produced for 1900 years after the death of Aristotle. His supreme merit lay in his rejection of magical and astrological practices, and adherence to nothing that could not be proved, by experiment and test, to be actual fact.
Back to top Go down
http://www.journalhome.com/silverwynd2/
Silver Wind
Aud Mon Ra
Silver Wind


Posts : 1525
Join date : 2007-07-18
Age : 42
Location : The Mists of Avalon

Muslim Alchemists Empty
PostSubject: Re: Muslim Alchemists   Muslim Alchemists Icon_minitimeThu Sep 27, 2007 12:10 pm

Later Arab Alchemists

No account of chemistry in Islam would be even approximately complete which omitted to mention four of Arab Alchemists: Abu'l-Qasim of Iraq, Aidamir al-Jildaki, Al-Tughra‘i and Al-Majriti.
The first of these men lived in the thirteenth century, probably at Cairo, and has left us several books which, apart from their intrinsic interest, serve to indicate the trend of alchemical thought and practice in Islam after the process of transmission to Europe had been in action for some considerable time. It is very obvious that in Abu'l-Qasim's time the reaction of European scientific thought upon Islam had not yet begun, and the contrast between the two intellectual worlds could not be better exemplified than in the persons of Abu'l-Qasim and his contemporary Roger Bacon. The driving force of Islam was beginning to grow weak, while the new stimulus that Arabic learning had given to Europe had resulted in a scientific renaissance which was to reach its full development not long afterwards. Abu'l-Qasim's outlook is that of his predecessors of three or four centuries earlier, and although there was unquestionably some advance in empirical practical chemistry, the theoretical views expressed are supported by quotations not merely from Jabir but from the still earlier alchemists of the Alexandrian school. Abu'l-Qasim himself seems to have been a good experimentalist and a comparatively logical thinker, but his general views often represent a retrograde movement upon those of Jabir.

Aidamir al-Jildaki (?-1342)

Who also lived for part of his life at Cairo, is of importance chiefly on account of his extensive and deep knowledge of Muslim chemical literature. He apparently spent the major portion of his existence in collecting and explaining all the books upon alchemy that he could discover, and labours are now beginning to receive their reward; for writings form an indispensable source of a great deal of our knowledge of chemistry and chemists in Islam. In a few instances it is possible to observe that he must have carried out experimental work himself, but for the most part his books are commentaries upon the works of earlier writers. Thus his great End of the Search is a commentary upon Abu'l-Qasim's book Knowledge acquired concerning the Cultivation of Gold, and although his explanations are not seldom more obscure than the passages they are designed to illuminate, he had the admirable habit of making innumerable and lengthy quotations from Khalid, Jabir, Razi and many other authors, and his books are thus a rich storehouse of information upon Muslim chemistry. It is therefore necessary to inquire into the question whether his quotations and historical facts are authentic, and whether his reliability is to be accepted or doubted. Fortunately, it often happens that a book from which he quotes is extant, and his quotations in such cases can of course be checked. A test conducted on these lines has shown that Jildaki was conscientious and although he does not always come through unscathed, his general trustworthiness can be safely assumed. He thus deserves the warmest thanks of all who are interested in the history of chemistry.

Al-Tughra'i (1063-1120)

This alchemist, who was a civil servant under the Seljuks Malik-shah and Muhammad, has great importance as a poet and a writer. His Lamiyyat al'ajam is very famous. He was executed in 1121.

In his Nihaya, Jaldakl tries to appraise the scientific value of al-Tughra'l: he was the most important alchemist since Jabir; his style has become perfect but his books can only be read by those who are already advanced in the great art. In his Kitab al-Masabt,h wa-l-maf tech (The Lamps and the Keys), he reports the teaching of the Ancients; he is more theoretical than practical. He declares in his poem that he has inherited his alchemy knowledge from Hermes. According to Jaldakl, his most important book on alchemy is MafAti,h al-rahma wa masabl,h al-,hikma.

Al-Majriti ( -1007)

In Andalusia, under the Caliphat of al-Hakam II (961-76) flourished scholars in all the domains, including alchemy. One of these was Maslama b. Ahmad, from Cordoba, better known under the name al-Majriti because he lived for a long time in Madrid. He assimilated Muslim sciences in the Arab Orient where he seems to have had close contacts with the originators of the famous Epistles of Ikhwan al-Safa'. He brought to Spain a new edition of this encyclopaedia. He is known in particular for his astronomical work: a revision of the Persian astronomical tables in Arabic chronology, a commentary on the Planispherium of Ptolemy and a treatise on the astrolabe. The last two were translated quite early into Latin and were very successful .

An important alchemy work, Rutbat' al-Hakzm wa mudkhal al-tathm (Rank of the Wise Man and Isagoge oh! Teaching), is attributed to him, and an astrological work called Chayat al-Haklm. The last was translated into Spanish in 1256 by order of Alfonso the Wise, King of Castile and Leon (from 1252 to 1284), and later it became popular in Latin under the name of Picatrix. Rabelais in Pantagruel mentions it when he speaks of the "Reverend Father of Devil Picatrix, rector of the diabolic faculty in Toledo". The attribution of the book to al-Majriti was considered false as the internal critique shows that this work could only have been written after 1009, while al-Majriti died in 1007.

Holmyard redeveloped an interest in Rutbat al-Haklm. The author first expresses his views on the way an aspiring alchemist should be educated: by study mathematics, books from Euclid and Ptolemy, natural sciences with Aristotle or Apollonius of Tyana; then he needs to acquire a manual ability and practice precise observation, reasoning about chemical substances and their reactions; in his research he needs to follow the laws of nature, like a physician: a physician diagnoses the disease and administers the medicine, but it is Nature who acts.
Back to top Go down
http://www.journalhome.com/silverwynd2/
Sponsored content





Muslim Alchemists Empty
PostSubject: Re: Muslim Alchemists   Muslim Alchemists Icon_minitime

Back to top Go down
 
Muslim Alchemists
Back to top 
Page 1 of 1
 Similar topics
-
» Alexandria-Egypt and Early Alchemists

Permissions in this forum:You cannot reply to topics in this forum
Beyond the Mystery :: Mystery Religons :: Alchemy-
Jump to: